Today.Az » Weird / Interesting » Live longer with fewer Calories?
02 November 2011 [09:30] - Today.Az
By consuming fewer calories, aging can be slowed down and the development of age-related diseases such as cancer and type 2 diabetes can be delayed. The earlier calorie intake is reduced, the greater the effect. Researchers at the University of Gothenburg have now identified one of the enzymes that hold the key to the aging process.
"We are able to show that caloric restriction slows down aging by
preventing an enzyme, peroxiredoxin, from being inactivated. This enzyme
is also extremely important in counteracting damage to our genetic
material," says Mikael Molin of the Department of Cell and Molecular
Biology.
By gradually reducing the intake of sugar and proteins, without
reducing vitamins and minerals, researchers have previously shown that
monkeys can live several years longer than expected. The method has also
been tested on everything from fishes and rats to fungi, flies and
yeasts with favourable results. Caloric restriction also has favourable
effects on our health and delays the development of age-related
diseases. Despite this, researchers in the field have found it difficult
to explain exactly how caloric restriction produces these favourable
effects.
Using yeast cells as a model, the research team at the University of
Gothenburg has successfully identified one of the enzymes required. They
are able to show that active peroxiredoxin 1, Prx1, an enzyme that
breaks down harmful hydrogen peroxide in the cells, is required for
caloric restriction to work effectively.
The results, which have been published in the journal Molecular Cell,
show that Prx1 is damaged during aging and loses its activity. Caloric
restriction counteracts this by increasing the production of another
enzyme, Srx1, which repairs Prx1. Interestingly, the study also shows
that aging can be delayed without caloric restriction by only increasing
the quantity of Srx1 in the cell. Repair of the peroxiredoxin Prx1
consequently emerges as a key process in aging.
"Impaired Prx1 function leads to various types of genetic defects and
cancer. Conversely, we can now speculate whether increased repair of
Prx1 during aging can counteract, or at least delay, the development of
cancer."
Peroxiredoxins have also been shown to be capable of preventing
proteins from being damaged and aggregating, a process that has been
linked to several age-related disorders affecting the nervous system,
such as Alzheimer's and Parkinson's. The researchers are accordingly
also considering whether stimulation of Prx1 can reduce and delay such
disease processes. /Science Daily/
|